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Practical Higher-order Functional and Logic Programming
based on

Lambda Calculus and Set Abstractiont

(Summaryj)

Frank S.K. Silbermann
Bharat Jayaraman

Department of Computer Science
University of North Carolina at Chapel Hill

Chapel Hill, NC 27514

Abstract

Ve propose new variation of relative set abstraction as an extension to a lambda-
calculus based functional language. This feature interacts orthogonally with the standard
functional language capabilities, yet provides the full expressive power of first-order Horn-
logic programming, as well as a very useful subset of higher-order Horn-logic programming.

This resulting language lends itself to efficient interpretation, in that complete operational
procedures are possible without computationally expensive primitives such as higher-order
unification, unification relative to an equational theory, or general theorem-proving.

t This research is supported by grant DCR-8603609 from the National Science Founda-
tion and contract N 00014-86-K-0680 from the Office of Naval Research.
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1. Introduction

From the perspective of predicate-logic programming, functional programming offers three
important additional capabilities: infinite data objects, higher-order objects, and direc-
tional (non-backtrackable) execution. From the perspective of functional programming, the
unique capabilities of predicate-logic programming are its support for constraint reasoning,
via unification over first-order terms, and flexible execution moding (non-directionality).
We describe in this paper an approach that combines these capabilities in a single lan-
guage. The language is efficient in that functional programming can be carried out without
backtracking, and its subset of higher-order logic programming can be carried out with-
out potentially expensive operations such as unification relative to an equational theory
[GM84], general theorem-proving [MMW84], or higher-order unification [MN86, R86]. It
is elegant in that all language constructs combine in an orthogonal way, simplifying the
denotational semantics. It is declarative in that the language does not depend upon imper-
ative control constructs or destructive assignments, and the language is extensional, i.e.,
two semantically identical objects can be used interchangeably in all contexts. Existing
approaches fall short in that they either

(a) support no higher-order programming at all [GM84, DP85, YS86], or

(b) require higher-order unification [MN86, R86] (in general undecidable), or

(c) have no extensional declarative semantics !SP85, W831, or

(d) have no identifiable purely functional subset [R85, L85].

The importance of our proposed work is that it overcomes all of the above short-
comings in a simple way. Our approach is to enhance a lambda-calculus based functional
language with a new variation of relative (not absolute) set abstraction. With this set-
abstraction mechanism, our language subsumes all of first-order Horn logic programming,

and much of higher-order Horn logic as well.

We believe that functional programming is a better basis for a unified declarative
language than Horn-logic, because propagation of higher-order objects does not require
higher-order unification. It is also amenable to a correct and efficient implementation,
as recent compilation techniques have shown [P871. Because all logic programming is
encapsulated within set-abstraction, it is possible to syntactically identify those parts of
a program that require backtracking and those parts that do not. With this distinction,

purely functional computations may be performed more efficiently.

We should point out two significant differences between our approach and similar

work:

(i) Although our relative set-abstraction is sntactice/l similar to Turner's set con-
struct in Miranda JT85], it is semantically very different. Turner's construct is essentially a
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high-level notation for defining lists. No semantic power is added by this construct; on the
contrary, representing a set as a list introduces an undesirable element of nondeterminism
in his language. (A function on sets may produce different results depending upon the list
representation used.) Our language provides true (recursively-enumerable) sets.

(ii) Our seta are closer in spirit to Darlington's absolute set abstraction [DFP86], but
with two important differences. All variables introduced in Darlington's set abstraction

are implicitly quantified over the set of first-order terms-relaxation of this restriction
requires higher-order unification, and even then many legal programs are unexecutable
specifications. We permit the variables to be quantified over any recursively-enumerable
set, which must first be explicitly specified. Hence our use of the term 'relative'. Variables
in our relative set abstraction can range over a set of functions, a set of sets, etc. Second,
Darlington does not specify how the sets he defines interact with other language constructs.
Our approach is orthogonal in that it permits set-valued functions, lists of sets, etc.

To support infinite objects (both infinite terms and infinite sets), the operational
semantics is based on the usual normal-order evaluation. Within a relative set-abstraction,
we defer as long as possible the enumeration of elements from the generator set of first-
order terms, reducing conditions over first-order terms via a simplified form of narrowing,
which we described in an earlier paper PJS86]. To maintain extensionality, equality over
higher-order types (sets and functions) is undefined.

The rest of this summary divides into the following sections: section 2 presents lan-
guage features and some examples to show the versatility of the constructs for higher-order
functional and logic programming; section 3 presents a declarative and procedural seman-
tics of the language, along with correctness theorems; and section 4 presents conclusions.

2. Language Framework

2.1 Informal Description

We describe below a language called Set). The data values of Set, consist of functions,

terms, and sets:

1. Functions are defined by \-abstraction. The primitive functions are the usual
LISP-like primitives car, cdr, atom, etc. [M651.

2. Terms are built up from the primitive constructor cons, and may contain atoms,
functions, or sets. A term may be infinite. First-order terms are built up from cons and 0
atoms only, and are of finite size.

3. Sets are defined by set abstraction. The primitive sets ae the set of atons (A) and
the set of first-order terms (T). Sets may also contain terms, functions and other sets.

Codes
2
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As in LISP, lists are a subset of terms, but written in the [...] notation, e.g. ['apple.
orange. ' grape]. For sake of brevity, we omit discussion of integers and their operations

in this presentation, although they will be include in the full paper.

At the top-level, a SetA program usually has the form

letrec name be ezpr, ... , name be ezpr in ezpr

where an expression ezpr may be an identifier, data value or any of the following:

1. letrec: as defined above

2. primitive: car(ezpr), cdr(ezpr), etc.

3. conditional: if condition then ezpr else ezpr

4. \-abstraction: A vara. ezpr

5. application: ezpr(ezpr, ..., ezpr)

6. set-abstraction: { set-clause; ... ; 8et-claue }

A condition has the form

ezpr, = ezpr2 or ezpri 6 ezpr 2, or atom? (ezpr), or pair? (ezpr), etc.,

and a set-clauee has the form

ezpr : enumerations . conditions

where enumerations specifies the generator sets for n distinct variables as follows:

var E ezprl, ... , vat,, E ezprn,

and conditions has the form:

condition, ... , condition

Notes: (1) Within a set-clause, a variable vari defined by enumeration var, E ezpri, may
be used in defining generator sets of later enumerations, as well as in the conditions and
head expression of the set-clause, but may not be used in ezpr i or earlier enumerations.
The scope of a variable introduced in enumerations does not extend to other set-clauses
in the set-abstraction.

(2) Because we use relative set-abstraction, every newly-introduced variable in a set-
clause has a corresponding generator-set. The set denoted by a set-abstraction is the union
of the sets denoted by each of its set-clauses.

(3) Equality and inequality are defined only between two first-order terms. It is a
type-error to use these two operations between sets or functions. When used between two

infinite terms made up from atoms and cons, the result is I if the terms are equal and
false otherwise.
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(4) We do not permit a non-membership condition of the form var 5 ezpr. This

operation is disallowed because sets are not assumed to recursive; disallowing this operation
also avoids the possibility of paradoxical sets.

2.2 Examples

Functional Programming

let
append be A x y . if null(x) then y else cons(car(x), append(cdr(x), y))

map be A f . 1 if null(l) then U else cons(f(car(l)), map(f. cdr(1)))

infinite be cons('a. infinite)

in

First-order and higher-order functions, as well as infinite objects can be defined in the

usual manner. Note that functions can be expressed in curried form, as the map example

illustrates.

Logic Programming

let

split be Alist . {cons(x,y) : x E T, y E T, append(x,y) = list)

in

Note: (1) T is the set of finite first-order terms. The enumerations x E T,y E T are needed

because the set-abstraction is relative. Operationally, the generation of elements from T

is always delayed as much as possible. Thus, the condition append(x,y) - list will be

first narrowed to obtain bindings for x and y; then the membership of x and y in T will be

verified (trivially).

(2) An operation such as append, which is used inside a set-abstraction as well as

outside it, might be compiled in two different ways corresponding to these two uses.

Set Operation8

let

crossprod be A sl s2 . {cons(x,y) : x E sl, y E s2}
filter beAps . {x : xEe, p(x)=true}

union beA s s2. {x : zE l; x : x Es2}
in

4



The operations crossprod and filter are similar to those in Miranda [T85]. The union

example illustrates the use of multiple clauses. Note that the occurrences of x in the two

clauses are independent.

Because nondeterministic enumeration is the only primitive operation on sets, it is

unnecessary to remove duplicates in the construction of sets. Note that one cannot define

an operation to compute the size of a set in SetA, because such an operation would be

analogous to Prolog's meta-logical features.

Higher-order Functional and Horn-logic programming

let

one be A v 'a

two bev . 'b

three be A v . 'c

in

{f : f E {one,two, three}, map(f)(['x. 'y. 'z]) - ['c. ', 'c]}

The result of the above set-abstraction is the set {three}. In this example, the generator

set for f, (one, two,three}, is first enumerated to obtain a function which is then passed

on to map. Those that satisfy the equality condition are kept in the resulting set.

We close this section by showing how any Horn-logic program can be mechanically

converted into SetA. Consider the following program, written in Prolog syntax [WPP77],

which has a unit clause, a conditional clause, and a top-level goal:

rev([]. ).

rev([HIT], Z) :- rev(T.Y), app(Y. MI]. Z).

? rev(L. [a. b. c]).

The converted SetA program would be as follows:

let

rev be{([. I] : true;

[cons(h. t). : h.t.y.zaE T. v E rev, v2 E app.
Vy = t. -Y] V2 - Y- (h]. z]}

in

{ 1 : ET. viErev, v, [l. 'a, 'b. '03]}

In Horn-logic, every predicate implicitly defines a et of terms--the set of argument term-

tuples for which the predicate is true. We have taken the liberty of writing h, t, y, z E T

instead of four separate enumerations.
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3. Semantics

3.1 Declarative Semantics

Though SetA supports logic programming, it is essentially a functional programming

language. We therefore present its semantics in the style conventional for functional lan-

guages [S771. The domains are as follows, where Aj is the flat domain of atoms, P is the

non-flat domain of terms, F is the domain of functions, and S is the domain of sets:

D = AL+ T + P + F + S
P=Dx(D

F = (D 4 D]

S P(D)

where P D) stands for the power-set of D. Space precludes us from presenting the details

of the structure of this power-domain in this summary; these will be given in the full

paper. We should note that its construction is similar to the power-domain for "angelic"

nondeterminism, as described by Broy [B85].

In the definitions below, the semantic function C maps general expressions to deno-

table values, and S handles the specific case for set-abstractions. The environment, p, maps

identifiers to denotable values, and belongs to the domain [Id -+ D]. In this summary we

provide only the semantic equations for (relative) set-abstractions, the novel part of the

language. The equations of 6 for the other five forms of expressions defined in section 2.1

are the conventional ones for a lazy functional language. We do not present these details

here, but will in the full paper.

6 (I{etclaue1;. ... ; 8etclau.}jJ, p) = S (I{setclau~el; ... ; etclam.R], p)
S ([{8etc1au~e; ... ; 8etetaue,}, p) = uj=j,, $ (I{ aetclau8e}, P)

S ([{ezpr : var E ezpr 2 , enumerations, condition.}I, p)

= UgEe(2pr21, p)S(({epr : enumeration8, conditiom.}, p(var +- gj)

S([{ezpr : condition, condition.}, p)

= if 6(Ieondition], p) then S([{ezpr : condition.}I, p) else =

S([{ezpr)j, p) = {C(ezprj, p))

The functions 6 and $ are mutually recursive. Their meaning is the least fixed point

of the recursive definition. Operations are continuous because all sets are recursively-

enumerable and the union operation U is continuous.

3.2 Operational Semantics

In the absence of set-abstraction, SetA is executed using normal-order evaluation like

any other lambda-calculus based functional language. When evaluating a set-abstraction,
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the interpreter must be capable of producing any element in the denoted set. This is
sufficient, because a set is examined only in enumeration expressions.

A simple non-deterministic operational procedure based on pure reduction can be
built directly from the denotational semantics. Everywhere the declarative semantics
equates a set-abstraction to a union of simpler set-expression, the operational semantics
non-deterministically rewrites the set-abstraction to anyone of them, until a singleton set
results. However, such a generate-and-test approach is needlessly inefficient. When the
generator set is the set of atoms (A), the set of finite first-order terms (T), we defer the
enumeration, and depend on conditions such as equality constraints or LISP-like predicates
(like pair?, etc.) to narrow the choice of plauseable candidates. So while enumerations
of first-order terms are delayed, partial evaluation of conditions where possible is given

priority.

Because we are dealing with an expression-based language, our handling of conditions
such as equality resembles narrowing in term-rewriting systems [GM84, DP85, YS86]. In
contrast to classical narrowing, we will need to perform reductions only at the outermost
level, and we need narrow only first-order terms, rather than arbitrary values. This avoids
the explosive growth possible in more general narrowing-based computations. Our oper-
ational procedure comes closest to Reddy's lazy narrowing [R85]. The main difference is
that we do not need a primitive unification at each narrowing step, as function application
uses only one-way substitution. Unification is diffused into the lazy narrowing process,
sketched below in the form of reduction rules.

We gave a detailed account of this process in our earlier paper [JS86]. In this summary,
we sketch some of the reduction rules for equality, ignoring environments and "variable

capture" during function application; the full paper provides a more thorough treatment.
We assume the set-abstraction has one clause for simplicity. The notation S[cond] means
that cond is a condition appearing in set-abstraction S; the notation S[enurm; conds]
means that the enumerations enum and conditions cond together appear in S. The
notation S[z; yj --+ Sp; qJ means that the enumerations z in S are replaced by p, and
the conditions y in S are replaced by q. Finally, the notation expr[el] means that el is the
outermost reducible expression of ezpr. For example, if ezpr were car(f (x)), el would be
f (x).

1. Application

S[ezpr[f(e,...,e.)J = czpr2j -. Sezprezprv ] = ezpr2J

where f is A v, ... v,. . expr, from the associated environment, and
or= {V1 - ez. ., , - e,}

2. Decompoaition

7



S[cons(e,,e2 ) = cons(e3,e4)] - S[e, = es, e2 = e4 1.

3. Primitives

S[x E T; expr[nuli(x)] = ezpr 2j -* (S[tru.; ezprltrue] = ezpr 2]) p

where p = {z - ] }.

Six E T; ezpr[null(z)J = epr2 1 -. (S[x1 E T, X2 E T; ezpr.f also] = expr2J) P

where p = {X +- cons(X1 ,X2 )}.

4. Variable Binding

S[X E T; z = cons(exprI, ePr2)] -+ (S[Z1 E T, X2 E T; x, = exprl, X2 = expr2l) P

where p = {z +- cons(XI, z 2 )}.

Note that there are two reduction rules for primitive null, in case 3. (Appropriate rules

can be similarly written for other primitives.) This causes nondeterministic branching in

the computation of sets. A successful derivation from a set-abstraction S is one which

eventually terminates in a singleton set, say a. Notationally, this is expressed as S -* s.

A derivation is said to fail if some condition is determined to be false. The following two

theorems will establish the correctness of the operational semantics.

Soundness Theorem:

Given a set-abstraction S and a SetM program P, and a derivation S --+* s, it follows

that a C T, where T is the set denoted by S according to the declarative semantics.

Completeness Theorem:

Given a set-abstraction S and a SetA program P, and a singleton set C 9 T, where

T Is the set denoted by S according to the declarative semantics, there exists a derivation

S -- + a.

A more rigorous statement of the theorems and their proofs are given in the full paper.

4. Conclusions

During the past decade, the integration of functional and logic programming has been
a topic of great interest [BL86]. Most of the efforts (including our earlier work [JS86])
have dealt only with first-order functional and logic programming. Those efforts that do

support higher-order functional programming (see section 1.0) do not provide both a clear
declarative semantics and an efficient operational semantics. We believe we have overcome

both these shortcomings in this paper.

Because our approach is based on an extensional higher-order functional lanaguage,

in which higher-order objects may not be compared, we avoid the need for higher-order

unification. We use relative set-abstraction in a novel way to obtain first-order Horn-logic
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programming as well as an extensional subset of higher-order logic programming. The

declarative semantics of these constructs is based on well-developed methods [S77, B851;

and the operational semantics is based on results from our earlier paper [JS86], which has

close connections with narrowing. The proofs of the correctness theorems are tedious, but

not technically difficult.
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